Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(5-Bromo-2-iodophenyl)-*N*-methyl-cyclopentanecarboxamide

Alexandra M. Z. Slawin,^a Sarah L. Nicoll,^b John M. D. Storey^b and William T. A. Harrison^b*

^aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

Received 2 July 2007; accepted 3 July 2007

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.039; wR factor = 0.102; data-to-parameter ratio = 16.7.

The title compound, $C_{13}H_{15}BrINO$, contains two molecules in the asymmetric unit which are linked into dimeric associations by way of very short $C-I \cdots O$ interactions $[I \cdots O = 2.998 (4)$ and 3.044 (4) Å]. The cyclopentane rings of both molecules are disordered; the site occupancy ratios are *ca* 0.54:0.46 and 0.59:0.41.

Related literature

For a related structure, see Slawin *et al.* (2007). For background on C–I···O interactions, see: Allen *et al.* (1997); Glidewell *et al.* (2005). For crystallographic reference data, see: Bondi (1964); Allen *et al.* (1987).

Experimental

Crystal data

C ₁₃ H ₁₅ BrINO $M_r = 408.07$ Triclinic, $P\overline{1}$ a = 9.0116 (14) Å b = 11.8073 (18) Å c = 13.697 (2) Å $\alpha = 86.430$ (12)° $\beta = 85.395$ (13)°	$\gamma = 78.849 (11)^{\circ}$ $V = 1423.6 (4) \text{ Å}^3$ Z = 4 Mo K α radiation $\mu = 5.04 \text{ mm}^{-1}$ T = 93 (2) K $0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2004) $T_{min} = 0.313, T_{max} = 0.633$	9341 measured reflections 5099 independent reflections 4616 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.039$	305 parameters

 $\begin{aligned} R[F^2 > 2\sigma(F^2)] &= 0.039 & 305 \text{ parameters} \\ wR(F^2) &= 0.102 & \text{H-atom parameters constrained} \\ S &= 1.02 & \Delta\rho_{\text{max}} = 1.28 \text{ e } \text{\AA}^{-3} \\ 5099 \text{ reflections} & \Delta\rho_{\text{min}} = -1.51 \text{ e } \text{\AA}^{-3} \end{aligned}$

Data collection: *CrystalClear* (Rigaku, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2427).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Allen, F. H., Lommerse, J. P. M., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1997). Acta Cryst. B53, 1006–1016.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.

Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Slawin, A. M. Z., Nicoll, S. L., Storey, J. M. D. & Harrison, W. T. A. (2007). Acta Cryst. E63, 02117–02119.

Acta Cryst. (2007). E63, o3407 [doi:10.1107/S1600536807032370]

N-(5-Bromo-2-iodophenyl)-N-methylcyclopentanecarboxamide

A. M. Z. Slawin, S. L. Nicoll, J. M. D. Storey and W. T. A. Harrison

Comment

The title compound, (I), complements the recently reported cyclohexanecarboxylic acid (5-bromo-2-iodo-phenyl)-methylamide, (II), (Slawin *et al.*, 2007), with a cyclopentane ring in (I) replacing a cyclohexane ring in (II).

There are two molecules in the asymmetric unit of (I) and their geometrical parameters fall within the expected ranges, allowing for the uncertainties arising from the disordered cyclopentane rings (Allen *et al.*, 1995).

For the first (C1) molecule, the dihedral angle between the mean planes of the aromatic ring and the methylated amide (C7/C8/N1/O1) group is 85.4 (2)°. A dihedral angle of 82.35 (17)° occurs for the equivalent atoms in the second (C14) molecule. In both molecules the methyl C atom and the O atom of the amide are in *cis* conformation.

In the crystal, the molecules of (I) form dimers (Fig. 1) by way of two very short C—I···O interactions (Allen *et al.*, 1997; Glidewell *et al.*, 2005) with the iodine···oxygen separations for C1—I1···O2 and C14—I2···O1 being 3.044 (4)Å and 2.998 (4) Å, respectively. The Bondi (1964) van der Waals' separation for I and O is 3.50 Å. The C1—I1···O2 and C14—I2···O1 angles are 171.12 (14)° and 174.44 (14), respectively.

A dimerization of the two asymmetric molecules *via* two very short C—I···O interactions [I···O = 3.038 (4) and 3.082 (4) Å]. also occurs in (II) (Slawin *et al.*, 2007).

Experimental

2-Iodo-5-bromoaniline (596 mg, 2.55 mmol) was added to DCM (5 ml) with triethylamine (0.7 ml, 5 mmol), and the mixture stirred magnetically whilst chilled in an ice bath. Once cool, cyclopentane carbonyl chloride (0.4 ml, 3 mmol) was added dropwise, and the mixture stirred for 2 hr during which time a precipitate was produced. Water (10 ml) was added to the flask, then the DCM layer was separated and washed with saturated sodium hydrogen carbonate (15 ml) and brine (15 ml), during which time the mixture emulsified. The DCM layer was filtered to yield a pure white filtrate and a yellow liquor which was dried (MgSO₄), and the solvent removed to yield colourless plates of cyclopentanecarboxylic acid (5-bromo-2-iodo-phenyl)-amide, (III).

Compound (III) (750 mg, 1.8 mmol) was dissolved in dry THF (10 ml), then injected into a pre-dried flask containing sodium hydride (40 mg, 1.8 mmol) in dry THF (10 ml) and the mixture stirred magnetically. When bubbling of the mixture ceased, methyl iodide (0.12 ml, 1.98 mmol) was added and the reaction left stirring overnight. Ammonium carbonate solution (10 ml) was then added and the mixture allowed to stir for 10 min, during which time a white precipitate formed which redissolved on the addition of water (15 ml). An extraction was performed into ethyl acetate (3 × 20 ml). Purification by flash column chromatography (10:1 v/v hexane:ethyl acetate) yielded 385 mg (51%) of the title compound with $R_f = 0.20$. Recrystallization from ethyl acetate afforded colourless prisms of (I).

Refinement

The disordered atoms were refined isotropically. The hydrogen atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The highest difference peak is 1.20Å from H25A and the deepest difference hole is 0.84Å from I1.

Figures

Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (H atoms omitted for clarity) showing the C—I···O interactions as double dashed lines. Only one disorder component of each cyclopentane ring is shown.

N-(5-Bromo-2-iodophenyl)-N-methylcyclopentanecarboxamide

Crystal data

C ₁₃ H ₁₅ BrINO	$V = 1423.6 (4) \text{ Å}^3$
$M_r = 408.07$	Z = 4
Triclinic, P1	$F_{000} = 784$
Hall symbol: -P 1	$D_{\rm x} = 1.904 {\rm Mg m}^{-3}$
<i>a</i> = 9.0116 (14) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>b</i> = 11.8073 (18) Å	$\mu = 5.04 \text{ mm}^{-1}$
c = 13.697 (2) Å	T = 93 (2) K
$\alpha = 86.430 \ (12)^{\circ}$	Block, colourless
$\beta = 85.395 \ (13)^{\circ}$	$0.30\times0.20\times0.10~mm$
$\gamma = 78.849 \ (11)^{\circ}$	

Data collection

Rigaku Mercury CCD diffractometer	5099 independent reflections
Radiation source: rotating anode	4616 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.033$
T = 93(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2004)	$h = -9 \rightarrow 11$
$T_{\min} = 0.313, T_{\max} = 0.633$	$k = -14 \rightarrow 14$
9341 measured reflections	$l = -13 \rightarrow 16$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Le	ast-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
R[$F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
wF	$R(F^2) = 0.102$	$w = 1/[\sigma^2(F_o^2) + (0.0565P)^2 + 4.5633P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> =	= 1.02	$(\Delta/\sigma)_{\text{max}} = 0.002$
50	99 reflections	$\Delta \rho_{max} = 1.28 \text{ e} \text{ Å}^{-3}$
30	5 parameters	$\Delta \rho_{\rm min} = -1.51 \text{ e } \text{\AA}^{-3}$
Pri me	mary atom site location: structure-invariant direct othods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	1.1153 (5)	-0.1887 (4)	0.2547 (3)	0.0124 (9)	
C2	1.2706 (5)	-0.2157 (4)	0.2354 (4)	0.0161 (10)	
H2	1.3310	-0.1606	0.2462	0.019*	
C3	1.3396 (5)	-0.3226 (4)	0.2003 (3)	0.0160 (10)	
Н3	1.4463	-0.3408	0.1868	0.019*	
C4	1.2494 (5)	-0.4020 (4)	0.1854 (3)	0.0132 (9)	
C5	1.0937 (5)	-0.3760 (4)	0.2046 (3)	0.0121 (9)	
Н5	1.0338	-0.4317	0.1945	0.015*	
C6	1.0248 (5)	-0.2686 (4)	0.2387 (3)	0.0115 (9)	
C7	0.8129 (6)	-0.2720 (5)	0.3635 (4)	0.0272 (12)	
H7A	0.9010	-0.2976	0.4023	0.041*	
H7B	0.7536	-0.3335	0.3650	0.041*	
H7C	0.7497	-0.2027	0.3910	0.041*	
C8	0.7602 (5)	-0.2074 (4)	0.1952 (4)	0.0161 (10)	
C9	0.8155 (6)	-0.1777 (5)	0.0919 (4)	0.0285 (12)	
Н9	0.9286	-0.1913	0.0913	0.034*	
C10	0.7655 (14)	-0.0507 (6)	0.0590 (6)	0.086 (4)	
H10A	0.6569	-0.0246	0.0793	0.103*	
H10B	0.8246	-0.0026	0.0908	0.103*	
C11	0.787 (2)	-0.0374 (16)	-0.0402 (13)	0.058 (5)*	0.54 (2)
H11A	0.8888	-0.0190	-0.0589	0.069*	0.54 (2)
H11B	0.7094	0.0256	-0.0663	0.069*	0.54 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.773 (2)	-0.1645 (12)	-0.0832 (10)	0.042 (4)*	0.54 (2)
H12A	0.6762	-0.1593	-0.1138	0.051*	0.54 (2)
H12B	0.8583	-0.1915	-0.1317	0.051*	0.54 (2)
C13	0.7807 (15)	-0.2456 (8)	0.0118 (7)	0.018 (3)*	0.54 (2)
H13A	0.6825	-0.2706	0.0277	0.022*	0.54 (2)
H13B	0.8608	-0.3151	0.0025	0.022*	0.54 (2)
C11A	0.748 (2)	-0.0505 (15)	-0.0543 (13)	0.042 (4)*	0.46 (2)
H11C	0.6714	0.0165	-0.0759	0.051*	0.46 (2)
H11D	0.8456	-0.0482	-0.0922	0.051*	0.46 (2)
C12A	0.704 (3)	-0.1467 (18)	-0.0650 (16)	0.063 (6)*	0.46 (2)
H12C	0.7723	-0.1910	-0.1152	0.075*	0.46 (2)
H12D	0.6005	-0.1296	-0.0888	0.075*	0.46 (2)
C13A	0.702 (3)	-0.2148 (16)	0.0228 (12)	0.045 (5)*	0.46 (2)
H13C	0.7340	-0.2977	0.0090	0.054*	0.46 (2)
H13D	0.5984	-0.2030	0.0552	0.054*	0.46 (2)
N1	0.8644 (4)	-0.2453 (3)	0.2616 (3)	0.0134 (8)	
01	0.6240 (4)	-0.1954 (3)	0.2193 (3)	0.0228 (8)	
Br1	1.33872 (5)	-0.54869 (4)	0.13779 (3)	0.01845 (13)	
I1	1.01734 (3)	-0.02584 (2)	0.30608 (2)	0.01834 (11)	
C14	0.4091 (5)	0.1964 (4)	0.3579 (3)	0.0116 (9)	
C15	0.2554 (5)	0.2366 (4)	0.3541 (3)	0.0132 (9)	
H15	0.1942	0.1892	0.3296	0.016*	
C16	0.1887 (5)	0.3460 (4)	0.3858 (3)	0.0148 (9)	
H16	0.0826	0.3734	0.3837	0.018*	
C17	0.2814 (5)	0.4141 (4)	0.4205 (3)	0.0105 (9)	
C18	0.4349 (5)	0.3751 (4)	0.4247 (3)	0.0111 (9)	
H18	0.4959	0.4227	0.4491	0.013*	
C19	0.5009 (5)	0.2656 (4)	0.3930 (3)	0.0115 (9)	
C20	0.7014 (6)	0.1548 (4)	0.4922 (4)	0.0197 (10)	
H20A	0.6094	0.1398	0.5298	0.030*	
H20B	0 7564	0 1966	0.5321	0.030*	
H20C	0 7661	0.0813	0.4745	0.030*	
C21	0 7703 (5)	0 2563 (4)	0.3387 (3)	0.0137 (9)	
C22	0.7215 (5)	0 3257 (4)	0 2463 (4)	0.0177 (10)	
H22	0.6125	0.3639	0.2557	0.021*	
C23	0.8186 (10)	0.4167 (6)	0.2159 (5)	0.021	
H23A	0.7582	0.4958	0.2221	0.071*	
H23R	0.9065	0.4074	0.2566	0.071*	
C24A	0.9003	0.3936 (16)	0.1089(11)	0.038 (5)*	0.41(2)
H24A	0.8656	0.4677	0.0701	0.045*	0.11(2) 0.41(2)
H24B	0.9766	0.3510	0.1041	0.045*	0.11(2) 0.41(2)
C24B	0.7931 (14)	0.4481 (10)	0.1136 (7)	0.031 (3)*	0.41(2) 0.59(2)
H24C	0.8806	0.4769	0.0795	0.038*	0.59(2)
H24D	0.7003	0.5077	0.1070	0.038*	0.59(2)
C25	0 7743 (9)	0 3274 (7)	0.0718 (5)	0.0525 (18)	0.07 (2)
H25A	0.8259	0.2816	0.0164	0.0525 (10)	
H25R	0.6797	0.3768	0.0503	0.063*	
C26	0.7/41 (10)	0.2519 (6)	0.0505	0.005	
U20 H26A	0.8308	0.2317 (0)	0.1570 (4)	0.055 (2)	
1120A	0.0300	0.10/1	0.1007	0.000	

H26B	0.6522	0.2197		0.1519		0.066	*	
N2	0.6596 (4)	0.2249 (3)		0.4027 (.	3)	0.011	3 (8)	
O2	0.9042 (4)	0.2256 (3)		0.3547 (.	3)	0.020	5 (7)	
Br2	0.19457 (5)	0.56264 (4)		0.46655	(3)	0.014	97 (13)	
I2	0.50529 (3)	0.03337 (2)		0.30769	(2)	0.016	27 (11)	
Atomic displacer	nent parameters ($(Å^2)$						
	U^{11}	U ²²	U ³³		U^{12}		<i>U</i> ¹³	U ²³
C1	0.011 (2)	0.0097 (19)	0.015 (2))	0.0024 (17)		-0.0031 (18)	0.0017 (17)
C2	0.012 (2)	0.016 (2)	0.021 (2))	-0.0048 (19)	-0.0006 (19)	-0.0012 (19)
C3	0.010 (2)	0.019 (2)	0.019 (2))	-0.0029 (19)	-0.0014 (19)	-0.0002 (19)
C4	0.015 (2)	0.012 (2)	0.012 (2))	-0.0010 (18)	-0.0008 (18)	-0.0021 (17)
C5	0.010 (2)	0.015 (2)	0.012 (2))	-0.0055 (18)	-0.0017 (18)	0.0001 (17)
C6	0.010(2)	0.016 (2)	0.008 (2))	-0.0016 (17)	-0.0004 (17)	0.0027 (17)
C7	0.021 (3)	0.035 (3)	0.020 (3))	0.003 (2)		0.006 (2)	0.012 (2)
C8	0.011 (3)	0.016 (2)	0.022 (2))	-0.0010 (18)	-0.006 (2)	-0.0051 (19)
C9	0.017 (3)	0.050 (3)	0.014 (2))	0.007 (2)		-0.004 (2)	-0.006 (2)
C10	0.183 (11)	0.039 (4)	0.042 (4))	-0.056 (6)		0.039 (6)	-0.013 (3)
N1	0.0090 (19)	0.0192 (19)	0.0115 (1	19)	-0.0042 (15)	0.0019 (15)	0.0050 (15)
01	0.0085 (18)	0.0267 (18)	0.034 (2))	-0.0042 (14)	-0.0009 (15)	-0.0075 (16)
Br1	0.0197 (3)	0.0146 (2)	0.0195 (3	3)	0.00165 (19)	-0.0020 (2)	-0.00340 (18)
I1	0.01572 (19)	0.01515 (17)	0.02395	(19)	-0.00073 (1	3)	-0.00382 (13)	-0.00309 (12)
C14	0.011 (2)	0.012 (2)	0.011 (2)	1	-0.0020 (17)	0.0024 (18)	0.0001 (17)
C15	0.011 (2)	0.016 (2)	0.014 (2))	-0.0075 (18)	0.0018 (18)	-0.0025 (18)
C16	0.008 (2)	0.024 (2)	0.013 (2))	-0.0030 (18)	0.0013 (18)	0.0006 (18)
C17	0.010 (2)	0.014 (2)	0.006 (2))	-0.0004 (17)	0.0021 (17)	0.0011 (16)
C18	0.009 (2)	0.015 (2)	0.010 (2))	-0.0051 (18)	-0.0003 (17)	-0.0005 (17)
C19	0.011 (2)	0.016 (2)	0.008 (2))	-0.0048 (18)	0.0004 (17)	0.0015 (17)
C20	0.020 (3)	0.023 (2)	0.017 (2))	-0.005 (2)		-0.008 (2)	0.006 (2)
C21	0.009 (2)	0.014 (2)	0.019 (2))	-0.0034 (18)	0.0004 (19)	-0.0053 (18)
C22	0.012 (2)	0.021 (2)	0.019 (2))	-0.0021 (19)	0.0021 (19)	0.0022 (19)
C23	0.097 (6)	0.047 (4)	0.051 (4))	-0.051 (4)		-0.024 (4)	0.012 (3)
C25	0.061 (5)	0.063 (5)	0.029 (4))	-0.007 (4)		0.007 (3)	0.001 (3)
C26	0.106 (6)	0.033 (3)	0.022 (3))	0.004 (4)		-0.019 (4)	-0.003 (3)
N2	0.0058 (19)	0.0151 (18)	0.0124 (1	18)	-0.0011 (15)	-0.0011 (15)	0.0016 (15)
O2	0.0095 (17)	0.0194 (17)	0.033 (2)		-0.0031 (13)	-0.0052 (15)	-0.0016 (15)
Br2	0.0117 (3)	0.0145 (2)	0.0182 (2	2)	0.00015 (18)	-0.00163 (19)	-0.00392 (18)
I2	0.01425 (19)	0.01533 (16)	0.02016	(18)	-0.00486 (1	2)	-0.00063 (13)	-0.00245 (12)
Geometric param	neters (Å, °)							
C1—C2		1.382 (7)		C12A—	H12D		0.9900)
C1—C6		1.398 (6)		C13A—	H13C		0.9900)
C1—I1		2.093 (4)		C13A—	H13D		0.9900)
C2—C3		1.391 (7)		C14—C	15		1.379	(6)
C2—H2		0.9500		C14—C	19		1.399	(6)
C3—C4		1.388 (6)		C14—I2			2.086	(4)
С3—Н3		0.9500		С15—С	16		1.395	(6)

C4—C5	1.384 (7)	C15—H15	0.9500
C4—Br1	1.895 (4)	C16—C17	1.394 (6)
C5—C6	1.391 (6)	C16—H16	0.9500
С5—Н5	0.9500	C17—C18	1.375 (6)
C6—N1	1.431 (6)	C17—Br2	1.901 (4)
C7—N1	1.470 (6)	C18—C19	1.394 (6)
С7—Н7А	0.9800	C18—H18	0.9500
С7—Н7В	0.9800	C19—N2	1.432 (6)
С7—Н7С	0.9800	C20—N2	1.469 (6)
C8—O1	1.228 (6)	C20—H20A	0.9800
C8—N1	1.353 (6)	C20—H20B	0.9800
C8—C9	1.506 (7)	C20—H20C	0.9800
C9—C13	1.486 (10)	C21—O2	1.225 (6)
C9—C10	1.530 (10)	C21—N2	1.365 (6)
C9—C13A	1.586 (17)	C21—C22	1.512 (6)
С9—Н9	1.0000	C22—C26	1.501 (8)
C10—C11	1.361 (19)	C22—C23	1.531 (7)
C10-C11A	1.57 (2)	C22—H22	1.0000
C10—H10A	0.9900	C23—C24B	1.451 (12)
C10—H10B	0.9900	C23—C24A	1.527 (18)
C11—C12	1.68 (2)	C23—H23A	0.9900
C11—H11A	0.9900	С23—Н23В	0.9900
C11—H11B	0.9900	C24A—C25	1.415 (16)
C12—C13	1.565 (16)	C24A—H24A	0.9900
C12—H12A	0.9900	C24A—H24B	0.9900
C12—H12B	0.9900	C24B—C25	1.612 (13)
C13—H13A	0.9900	C24B—H24C	0.9900
C13—H13B	0.9900	C24B—H24D	0.9900
C11A—C12A	1.29 (3)	C25—C26	1.485 (9)
C11A—H11C	0.9900	C25—H25A	0.9900
C11A—H11D	0.9900	С25—Н25В	0.9900
C12A—C13A	1.40 (2)	C26—H26A	0.9900
C12A—H12C	0.9900	С26—Н26В	0.9900
C2—C1—C6	120.3 (4)	C12A—C13A—H13D	110.1
C2—C1—I1	119.1 (3)	C9—C13A—H13D	110.1
C6—C1—I1	120.6 (3)	H13C—C13A—H13D	108.4
C1—C2—C3	120.8 (4)	C8—N1—C6	124.5 (4)
С1—С2—Н2	119.6	C8—N1—C7	119.2 (4)
С3—С2—Н2	119.6	C6—N1—C7	116.2 (4)
C4—C3—C2	118.7 (4)	C15—C14—C19	120.2 (4)
С4—С3—Н3	120.6	C15—C14—I2	119.7 (3)
С2—С3—Н3	120.6	C19—C14—I2	120.1 (3)
C5—C4—C3	121.1 (4)	C14—C15—C16	120.8 (4)
C5—C4—Br1	118.8 (3)	C14—C15—H15	119.6
C3—C4—Br1	120.1 (3)	C16—C15—H15	119.6
C4—C5—C6	120.1 (4)	C17—C16—C15	118.4 (4)
C4—C5—H5	120.0	С17—С16—Н16	120.8
С6—С5—Н5	120.0	С15—С16—Н16	120.8
C5—C6—C1	119.0 (4)	C18—C17—C16	121.4 (4)

C5—C6—N1	119.1 (4)	C18—C17—Br2	118.8 (3)
C1—C6—N1	121.7 (4)	C16—C17—Br2	119.7 (3)
N1—C7—H7A	109.5	C17—C18—C19	120.0 (4)
N1—C7—H7B	109.5	С17—С18—Н18	120.0
H7A—C7—H7B	109.5	С19—С18—Н18	120.0
N1—C7—H7C	109.5	C18—C19—C14	119.2 (4)
H7A—C7—H7C	109.5	C18—C19—N2	118.8 (4)
H7B—C7—H7C	109.5	C14—C19—N2	121.9 (4)
O1—C8—N1	120.8 (4)	N2—C20—H20A	109.5
O1—C8—C9	120.9 (4)	N2—C20—H20B	109.5
N1—C8—C9	118.3 (4)	H20A—C20—H20B	109.5
C13—C9—C8	118.1 (6)	N2—C20—H20C	109.5
C13—C9—C10	105.8 (6)	H20A—C20—H20C	109.5
C8—C9—C10	114.2 (5)	H20B—C20—H20C	109.5
C13—C9—C13A	27.6 (6)	O2—C21—N2	120.5 (4)
C8—C9—C13A	106.1 (7)	O2—C21—C22	121.8 (4)
C10-C9-C13A	90.8 (8)	N_{2} C21 C22	117.6 (4)
C13—C9—H9	106.0	$C_{26} = C_{22} = C_{21}$	111.8 (4)
С8—С9—Н9	106.0	$C_{26} = C_{22} = C_{23}$	102.9 (5)
C10—C9—H9	106.0	$C_{21} - C_{22} - C_{23}$	112.6 (4)
C13A—C9—H9	133.2	C26—C22—H22	109.8
$C_{11} - C_{10} - C_{9}$	110.0 (9)	$C_{21} - C_{22} - H_{22}$	109.8
C_{11} C_{10} C_{11A}	167(10)	C^{23} C^{22} H^{22}	109.8
C9-C10-C11A	105 5 (8)	$C_{24B} - C_{23} - C_{24A}$	33 2 (7)
C11—C10—H10A	109.5 (0)	$C_{24B} = C_{23} = C_{27}$	105 7 (6)
C9-C10-H10A	109.7	$C_{24A} - C_{23} - C_{22}$	103.7(0) 104.0(7)
$C_{11}A - C_{10} - H_{10}A$	97 3	C24B—C23—H23A	80.0
C_{11} C_{10} H_{10B}	109.7	$C_{24A} - C_{23} - H_{23A}$	110.9
C9—C10—H10B	109.7	C_{22} C_{23} H_{23} A_{23}	110.9
C11A—C10—H10B	125.4	C24B—C23—H23B	135.2
H10A—C10—H10B	108.2	$C^{24}A - C^{23} - H^{23}B$	110.9
C_{10} C_{11} C_{12}	105.3 (12)	C22_C23_H23B	110.9
C10-C11-H11A	110.7	H23A-C23-H23B	109.0
C12_C11_H11A	110.7	$C_{25} = C_{24} = C_{23}$	109.0 108.7(11)
C10—C11—H11B	110.7	$C_{25} = C_{24} = H_{244}$	110.0
C12_C11_H11B	110.7	$C_{23} = C_{24} = H_{244}$	110.0
H11A_C11_H11B	108.8	$C_{25} = C_{24} + H_{24} + H$	110.0
C13_C12_C11	108.8	C23—C24A—H24B	110.0
C_{13} C_{12} H_{12}	111.3	$H_{24} = C_{24} = H_{24}$	108.3
C11_C12_H12A	111.3	C^{23} C^{24} B^{25} C^{25}	100.5 102.5(7)
C13_C12_H12B	111.3	$C_{23} = C_{24} = H_{24} = H$	102.5 (7)
C11_C12_H12B	111.3	$C_{25} = C_{24B} = H_{24C}$	111.3
H12A - C12 - H12B	109.2	$C_{23} = C_{24B} = H_{24D}$	111.3
C9-C13-C12	106.7 (7)	$C_{25} = C_{24B} = H_{24D}$	111.3
C9—C13—H13A	110.4	H_24C — C_24B — H_24D	109.2
C12-C13-H13A	110.4	$C^{24}A - C^{25} - C^{26}$	101 4 (8)
C9-C13-H13B	110.4	C24A—C25—C24B	319(7)
C12-C13-H13B	110.4	C26-C25-C24B	1059(6)
H13A—C13—H13B	108.6	$C_{24} = C_{25} = H_{25}$	111 5

C12A—C11A—C10	103.7 (15)	C26—C25—H25A	111.5
C12A—C11A—H11C	111.0	C24B—C25—H25A	133.1
C10—C11A—H11C	111.0	С24А—С25—Н25В	111.5
C12A—C11A—H11D	111.0	С26—С25—Н25В	111.5
C10—C11A—H11D	111.0	C24B—C25—H25B	80.8
H11C—C11A—H11D	109.0	H25A—C25—H25B	109.3
C11A—C12A—C13A	112.4 (18)	C25—C26—C22	106.9 (5)
C11A—C12A—H12C	109.1	C25—C26—H26A	110.3
C13A—C12A—H12C	109.1	С22—С26—Н26А	110.3
C11A—C12A—H12D	109.1	C25—C26—H26B	110.3
C13A—C12A—H12D	109.1	C22—C26—H26B	110.3
H12C-C12A-H12D	107.9	H26A—C26—H26B	108.6
C12A—C13A—C9	108.1 (13)	C21—N2—C19	123.6 (4)
C12A—C13A—H13C	110.1	C21—N2—C20	119.8 (4)
C9—C13A—H13C	110.1	C19—N2—C20	116.4 (3)
C6—C1—C2—C3	-0.3 (7)	C1—C6—N1—C8	98.8 (5)
I1—C1—C2—C3	-179.4 (3)	C5-C6-N1-C7	91.4 (5)
C1—C2—C3—C4	-0.3 (7)	C1—C6—N1—C7	-85.1 (5)
C2—C3—C4—C5	0.2 (7)	C19—C14—C15—C16	-0.5 (7)
C2—C3—C4—Br1	-179.9 (3)	I2—C14—C15—C16	-179.0 (3)
C3—C4—C5—C6	0.5 (7)	C14—C15—C16—C17	0.6 (7)
Br1-C4-C5-C6	-179.4 (3)	C15-C16-C17-C18	-0.6 (7)
C4—C5—C6—C1	-1.1 (7)	C15-C16-C17-Br2	-178.9 (3)
C4—C5—C6—N1	-177.7 (4)	C16-C17-C18-C19	0.5 (6)
C2—C1—C6—C5	1.0 (7)	Br2-C17-C18-C19	178.8 (3)
I1—C1—C6—C5	-180.0 (3)	C17—C18—C19—C14	-0.4 (6)
C2-C1-C6-N1	177.5 (4)	C17—C18—C19—N2	-176.9 (4)
I1—C1—C6—N1	-3.5 (6)	C15-C14-C19-C18	0.4 (6)
O1—C8—C9—C13	-63.9 (8)	I2—C14—C19—C18	178.9 (3)
N1-C8-C9-C13	117.6 (7)	C15-C14-C19-N2	176.8 (4)
O1—C8—C9—C10	61.4 (8)	I2-C14-C19-N2	-4.6 (6)
N1-C8-C9-C10	-117.2 (7)	O2—C21—C22—C26	76.3 (6)
O1—C8—C9—C13A	-37.0 (10)	N2-C21-C22-C26	-101.3 (6)
N1-C8-C9-C13A	144.5 (9)	O2—C21—C22—C23	-39.1 (7)
C13-C9-C10-C11	-33.6 (13)	N2-C21-C22-C23	143.3 (5)
C8—C9—C10—C11	-165.1 (12)	C26—C22—C23—C24B	41.2 (9)
C13A—C9—C10—C11	-57.1 (13)	C21—C22—C23—C24B	161.8 (7)
C13—C9—C10—C11A	-16.7 (11)	C26—C22—C23—C24A	6.8 (10)
C8—C9—C10—C11A	-148.2 (9)	C21—C22—C23—C24A	127.5 (9)
C13A—C9—C10—C11A	-40.2 (12)	C24B—C23—C24A—C25	-78.8 (15)
C9—C10—C11—C12	28.0 (16)	C22—C23—C24A—C25	18.5 (15)
C11A—C10—C11—C12	-49 (4)	C24A—C23—C24B—C25	56.7 (12)
C10-C11-C12-C13	-13.1 (16)	C22—C23—C24B—C25	-35.1 (9)
C8—C9—C13—C12	151.9 (8)	C23—C24A—C25—C26	-35.9 (14)
C10-C9-C13-C12	22.5 (10)	C23—C24A—C25—C24B	66.1 (14)
C13A—C9—C13—C12	82.0 (16)	C23—C24B—C25—C24A	-69.0 (14)
C11—C12—C13—C9	-6.8 (13)	C23—C24B—C25—C26	16.9 (10)
C11—C10—C11A—C12A	141 (5)	C24A—C25—C26—C22	40.7 (11)
C9—C10—C11A—C12A	32.5 (18)	C24B—C25—C26—C22	8.2 (9)

C10-C11A-C12A-C13A	-5(2)	C21—C22—C26—C25	-150.2 (5)
C11A—C12A—C13A—C9	-23 (2)	C23—C22—C26—C25	-29.0 (8)
C13—C9—C13A—C12A	-85.2 (19)	O2-C21-N2-C19	174.5 (4)
C8—C9—C13A—C12A	154.3 (13)	C22-C21-N2-C19	-7.9 (6)
C10-C9-C13A-C12A	38.8 (15)	O2—C21—N2—C20	0.7 (6)
O1—C8—N1—C6	175.9 (4)	C22-C21-N2-C20	178.4 (4)
C9—C8—N1—C6	-5.6 (7)	C18-C19-N2-C21	-80.3 (5)
O1—C8—N1—C7	-0.1 (7)	C14-C19-N2-C21	103.3 (5)
C9—C8—N1—C7	178.5 (4)	C18—C19—N2—C20	93.7 (5)
C5—C6—N1—C8	-84.7 (6)	C14-C19-N2-C20	-82.8 (5)

Fig. 1